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Abstract 

Synthetic Aperture Radar (SAR) Interferometry (InSAR) represents one of the most widely 

employed remote sensing methodologies for precise topographical mapping and ground 

deformation monitoring. InSAR harnesses the phase disparity between a pair of co-

registered SAR images, termed the interferometric phase (𝜓). The two-dimensional 

depiction of ψ is referred to as the interferogram, conventionally measured modulo 2π. To 

derive topographic elevations and ground deformations from the interferogram, it is 

imperative to transform the wrapped interferometric phase into an absolute phase field (φ) 

by appending the correct multiple of 2π to each fringe (2πk, where k denotes the wrap 

count, such that 𝜙(𝑥, 𝑦)  = 𝜓(𝑥, 𝑦)  +  2𝜋𝑘(𝑥, 𝑦)). However, this undertaking is inherently 

ill posed, necessitating the incorporation of additional constraints for robust solutions. 

Conventionally, the Itoh's condition is applied, limiting the phase discrepancy between 

neighboring pixels to the range of [-π, π]. The phase unwrapping (PU) process aims to extract 

the continuous phase (𝜙) from its wrapped counterpart(𝜓), which lies within the interval (-

π, π]. Traditional Spatial Phase Unwrapping Methods encompass path-following, Minimum 

Norm-based, and network-based strategies. Recent strides made in advanced unwrapping 

methodologies, including Deep Learning-driven Regression, Deep Learning-driven Wrap 

Count determination, and Deep Learning-facilitated De noising techniques. This paper 

provides an overview of various phase unwrapping algorithms. It identifies key research 

areas and emphasizes the need for robust phase unwrapping techniques to enhance the 

accuracy and reliability of SAR Interferometry for Earth observation and geospatial analysis. 

Keywords InSAR, Phase Unwrapping (PU), Interferogram (IFG), Residue, Digital Elevation 

Model (DEM), Single Look complex (SLC) 

Introduction 

Interferometric Synthetic Aperture Radar (InSAR) is a radar technique used in geodesy and 

remote sensing to create digital elevation maps and detect surface deformations. It can 

detect millimeter-scale changes in deformation over various time frames, making it valuable 

for monitoring natural hazards like earthquakes, volcanoes, and landslides. To generate a 

DEM from Single look complex (SLC) images in InSAR, several steps are involved, including 

co-registration, resampling, filtering, interferogram (IFG) generation, coherence calculation, 

Phase Unwrapping (PU), slant-to-height conversion, and geo-coding. The accuracy and 

reliability of the results are directly impacted by PU [Chen & Zebker, 2001, 2002]. InSAR 

creates an IFG by multiplying two SAR images S1 & S2 shown in Eq (1) & (2) at different 
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times, representing the phase difference between corresponding pixels in co-registered SLC 

images.  

 

𝑆1 = 𝑎1𝑒𝑥𝑝
(𝑖4𝜋𝑅1 𝜆⁄ ), 𝑆2 = 𝑎2𝑒𝑥𝑝

(𝑖4𝜋𝑅2 𝜆⁄ ) (1.1) 

 
Where a1, a2 = complex reflectivity, R1, R2 is range from antenna to surface,  𝜆 =
wavelength, 
 

(𝑠1)(𝑠2
∗) = 𝑎1𝑎2𝑒𝑥𝑝

(𝑖4𝜋(𝑅1−𝑅2)∕𝜆) = 𝑠(𝑡) (1.2) 

Phase Difference is proportional   to the effective difference in range, which in turn 

depends on satellite geometry, topography [Bamler & Hartl, 1998] and provides crucial 

information about surface deformation and elevation changes, this. The relationship 

between topographical height and absolute phase is as follows: 

 

ℎ(𝑝) =
𝜆 R sin𝜃𝜙(𝑝)

4𝜋𝐵𝑝𝑒𝑟
 (1.3) 

Where ℎ(𝑝) the topographical height of the pixel, R is the slant range of the pixel, θ 

is the incidence angle and 𝐵𝑝𝑒𝑟  is the perpendicular baseline. Wrapped phase is obtained 

from IFG that varies from -π ≤ 𝜓 (p) - 𝜓 (p - 1) < π, and unambiguous absolute phase can be 

obtained by Eq. (2): 

 

  𝜙(𝑝) = 𝜓(𝑝) +  2𝜋𝑘(𝑝) (1.4) 

The biggest difficulty of 2-D PU is that there are two unknown variables ψ (p) and k 

(p) in Eq. (1.4). Therefore, we cannot obtain the absolute phase ψ (p) to recover the 

topographical height h (p) only through Eq. (1.3). To obtain the unique solution of (1.3), the 

phase continuity assumption (or Itoh condition) [K. Itoh., 1982] was proposed and applied to 

almost all 2-D PU methods. The phase continuity assumption assumes that the phase 

differences between adjacent pixels do not exceed π. Under this assumption, we can 

correctly estimate the absolute phase gradient information, which is obtained by the 

following formula: 

 

Where, ∇ϕ(p-1) is the estimated absolute phase gradient between adjacent pixels, p and p-1. 

 

∇𝜙(𝑝 −

1)= 

𝜓(p) - 𝜓(p-1),  

𝜓(p) - 𝜓(p-1)- 2π,  

𝜓(p) -    𝜓(p-1) + 

2π,  

 if | 𝜓(p) - 𝜓(p-1) | ≤ π 

if  𝜓(p) - 𝜓(p-1)> π 

if 𝜓(p) - 𝜓(p-1) < -π 
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The interferometric phase (IFG) in real applications often contains noise and large 

deformation gradients, resulting in phase discontinuities. These discontinuities challenge PU 

methods as they violate the assumption of phase continuity. To estimate local topography, 

an unwrapping procedure is necessary. The goal of PU is to recover the integer number of 

cycles k ∈ℤ to add to the wrapped phase Ψ(p) to obtain an unambiguous phase value Φ(p) 

for each image pixel. This problem is more difficult and numerous solving techniques have 

been proposed in the literature. 

Materials and Methods 

This section of the article offers a comprehensive assessment of phase unwrapping 
algorithms, which can be categorized into three main types: Path-following methods, 
Optimization based methods and Deep learning-based methods. Here, we will provide 
concise descriptions of each method being examined, emphasizing their core principles. 

Path-Following Methods: Path-following methods aim to integrate estimated phase 
gradients to enhance accuracy while traversing a grid path and making incremental phase 
value adjustments. However, they do not directly address residue issues but incorporate 
them during unwrapping. To handle residues and prevent path-dependent results, cut lines 
and branch cuts (Goldstein et al., 1988) are introduced. Table-1 provides an overview of the 
Path-Following Phase Unwrapping (PU) techniques. 

Table 1 Overview of Various Path-Following Phase Unwrapping (PU) Techniques. 

Path following 
Algorithm 

                                                             Description 

Branch-Cut 
Algorithm 

Detects discontinuities in the wrapped phase field. Identifies residues as +1 
or -1 charges based on phase differences along closed paths. Utilizes 
branch cuts as impassable barriers during path integration. Requires careful 
placement of branch cuts. 

Quality Guided 
Methods 

Leverages quality maps to guide integration paths. Addresses residues in 
low-quality regions, prioritizing higher-quality pixels for phase unwrapping. 
Aims to mitigate the potential misplacement of branch cuts, which is a 
challenging problem in branch cut. When a high-quality map is not 
available, Goldstein's algorithm demonstrates superior performance 

Mask Cut Combines quality maps with branch cuts (Goldstein's algorithm) to form a 
hybrid approach. Quality maps guide the placement of branch cuts, 
enhancing the accuracy of the unwrapping process. 

                   

Residue is the discontinuity in IFGs and defined by Eq. (1.5) 

 

𝑅𝑚𝑛 = ∇
𝑥𝜓𝑚𝑛 − ∇

𝑥𝜓𝑚,𝑛+1 + ∇
𝑦𝜓𝑚+1,𝑛 − ∇

𝑦𝜓𝑚𝑛 (1.5) 

Where ∇𝑥𝜓 and  ∇𝑦𝜓 are the derivatives of the M×N wrapped phase in the vertical and the 
horizontal direction. 

Quality Guided Algorithms prioritize pixels with higher quality values during phase 
unwrapping order [M. Roth, 1995], utilizing metrics like Correlation coefficient, 
Pseudocorrelation, Maximum gradient, and Phase derivative variance (Eq. 1.6) [Ghiglia & 
Pritt. (Chap.4), 1998]. 
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𝑣(𝑚, 𝑛) =
√(∑(∇ 

𝑥𝜓𝑖𝑗 −  ∇
𝑥𝜓𝑚𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅)

2
   + √(∑(∇𝑦𝜓𝑖𝑗 − ∇

𝑦𝜓𝑚𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅)
2
 

𝑁2
 (1.6)

 

                                      

Where each sum of   index (i, j) ranges over the N ×N window centered at the pixel (m, 
n).∇𝑥𝜓𝑖𝑗  and ∇𝑦𝜓𝑖𝑗  are derivatives of wrapped phase. Terms ∇𝑥𝜓𝑚𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ and ∇𝑦𝜓𝑚𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅   are 
averages of these partial derivatives in the N ×N window.  

The Mask Cut [Ghiglia & Pritt, 1998] algorithm distinguishes itself from quality-guided 
methods by following lower quality pixels from one residue to another until a balance is 
achieved via regions of low-quality pixels known as mask cuts. Mask Cut does not minimize 
the length of mask cuts but incorporates a thinning operation for optimization. 

Optimization Based Methods: Optimization-based methods in phase unwrapping utilize 
mathematical functions and algorithms to minimize phase discontinuities and obtain a more 
accurate unwrapped phase map. 

 

Minimum Norm Methods: Minimum norm methods employ a global approach, optimizing 
the entire interferogram image, unlike path following techniques, which operate, on a local 
scale. The Minimum 𝐿𝑝 Norm approach in minimum norm methods aims to minimize the 
difference between absolute phase derivatives and wrapped phase derivatives, resulting in 
an absolute phase solution as Eq (1.7). The objective is to obtain an unwrapped image 
solution of cost functio𝑛 𝐽𝑖𝑗, shown in Eq (1.8) 

 

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐽𝑖𝑗  
𝜙

(1.7) 

 

𝐽𝑖𝑗 = ∑ ∑ 𝑞𝑖𝑗
ℎ |𝑁−1

𝑗=1
𝑀
𝑖=1 ∇ℎ𝜙𝑖𝑗 − ∇

ℎ𝜓𝑖𝑗|
𝑝 + ∑ ∑ 𝑞𝑖𝑗

𝑣 |𝑁
𝑗=1

𝑀−1
𝑖=1 ∇𝑣𝜙𝑖𝑗 − ∇

ℎ𝜓𝑖𝑗  |
𝑝 (1.8) 

  ∇ℎ𝜓𝑖𝑗  = 𝑊(𝜓𝑖,𝑗+1  − 𝜓𝑖𝑗), ∇
𝑣𝜓𝑖𝑗   = 𝑊(𝜓𝑖+1,𝑗 − 𝜓𝑖𝑗), ∇

ℎ𝜙𝑖𝑗  = 𝜙𝑖,𝑗+1  − 𝜙𝑖𝑗, ∇
𝑣𝜙𝑖𝑗   = 𝜙𝑖+1,𝑗 − 𝜙𝑖𝑗 

                                                                                                                                                                          (1.9)
 

 

Eq. (1.9) indicates discrete differentiation; 𝑞𝑖𝑗
ℎ/𝑣

 are horizontal and vertical quality measures 

[H. Lim, W. Xu, & X. Huang, 1995] known as user-defined weights; and the summations 
include all appropriate rows i and column j.  In regions where it is known to exist absolute 

phase discontinuities, or noise corruption, we can set 𝑞𝑖𝑗
ℎ/𝑣
 to lower or zero values and, so, 

reduce the bad quality phase influence on the unwrapped solution [Ghiglia &. Romero, 
1999]. 

 

A. 𝐿2 Norm Algorithms/Least squares Methods:  The least-squares form (𝑝 = 2 in Eq. (1.8)), is 
a common minimum-norm algorithm, aiming to minimize the square of differences' 
magnitude. However, it can smooth discontinuities without binary weights. Various 
algorithms have been developed to approximate the least squares solution by relaxing the 
discrete domain from ℤ𝑚𝑛 𝑡𝑜   ℝ𝑚𝑛. This relaxation addresses computational challenges and 
can be done using fast Fourier or cosine transforms or network programming techniques [14, 
Chap. 5].An exact solution to least squares is developed as a step of the ZπM algorithm in 
[Jos M. Bioucas-Dias &  Gonalo Valadao, 2007], using network programming techniques.LS 
phase unwrapping can be unweighted or weighted.  
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Unweighted LS unwrapping: The unweighted least-squares solution to an over-determined 
set of linear equations is:  𝐺𝜙 = 𝜌     ⇒      𝐺𝑇𝐺𝜙 = 𝐺𝑇𝜌  ⇒  (𝐺𝑇𝐺)−1𝐺𝑇𝐺𝜙 =

(𝐺𝑇𝐺)−1𝐺𝑇𝜌   

    Where 𝜌𝑚𝑛 = (∇𝜓𝑚𝑛
𝑥 − ∇𝜓𝑚−1,𝑛

𝑥 ) + (∇𝜓𝑚𝑛
𝑦
−

∇𝜓𝑚,𝑛−1
𝑦

)     is wrapped phase differences        
𝜙𝑙𝑠

= (𝐺𝑇𝐺)−1𝐺𝑇𝜌 (2.1) 

Where 
 
𝝓
𝒍𝒔

 is unwrapped phase solution shown in Eq (2.2), and G is a geometry matrix which 

converts phase to wrapped phase differences. The discrete Laplacian operation,𝑮𝑻𝑮, is used 
to solve partial differential equations in the form of a discrete version of Poisson's equation. 
Fast Fourier Transform (FFT) algorithms stitch mirror images of the phase to create 
periodicity, allowing for easy solution using Fourier-transform techniques. 

Weighted least-squares algorithms: use quality maps to avoid branch points, providing a 
more robust. They solve overdetermined linear equations: 𝑊𝐺𝜙 = 𝑊𝜌               ⇒ 
              𝐺𝑇𝑊𝑇𝑊𝐺𝜙 = 𝐺𝑇𝑊𝑇𝑊𝜌   

𝑄𝜙 = 𝑠 (2.2)
Where 𝑄 = 𝐺𝑇𝑊𝑇𝑊𝐺 & 𝑠 = 𝐺𝑇𝑊𝑇𝑊𝜌 and W is a matrix of weights, the vector s contains 
weighted phase differences with discrete Laplacian operation thus Eq. (2.2) cannot be solved 
using unweighted LS techniques like FFT-based algorithms due to its computationally 
intensive and time-consuming nature [Pritt, M.D., 1994]. The Picard method and 
Preconditioned Conjugate Gradient (PCG) are two methods for solving weighted LS 
problems, but the Picard method is impractical due to its many iterations, while PCG is 
faster. 

B. 𝐿1 Norm Algorithms: In cases when there are many outliers (unwrap errors), the 𝐿1-norm 
is more resilient than the 𝐿2-norm. The algorithms with the minimal 𝐿1-norm retain 
discontinuities better than those with the 𝐿2-norm. 

 

Flynn’s Minimum Weighted Discontinuity Method: The core concept of Flynn's approach 
[Flynn, T, 1997] is to select between the possible unwrapped images, the one that minimizes 
discontinuities. This method operates by applying iteratively an elementary step of 
partitioning the image in two connected regions and then, adding a 2π phase to one of them, 
such that the weighted sum of  

discontinuities decrease. Flynn method calculates the weighted sum of the magnitudes of 
the phase discontinuities (horizontal (ℎ𝑖𝑗) and vertical jumps (𝑣𝑖𝑗) in Phase) and aims to 
place these discontinuities in appropriate locations. 

 The goal of Flynn’s algorithm is to minimize following Cost function  𝑍𝑚𝑛 mentioned in Eq 
(2.3), which helps in obtaining a more accurate unwrapped phase map.  

                                      
𝑍𝑚𝑛 = ∑𝑞𝑖,𝑗

𝑣 |𝑣𝑖,𝑗| + 𝑞𝑖𝑗
ℎ  |ℎ𝑖,𝑗| (2.3) 

  Where 𝑣𝑖𝑗 = ⌊
𝜙𝑖𝑗−𝜙𝑖−1,𝑗+𝜋

2𝜋
⌋ ℎ𝑖𝑗 = ⌊

𝜙𝑖𝑗−𝜙𝑖,𝑗−1+𝜋

2𝜋
⌋ 
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The phase unwrapping max-flow algorithm (PUMA) PUMF Approach: Bioucas-Dias and 
Gonçalo Valadão introduced an energy-minimization framework for PU, in order to 
overcome drawback associated to minimum 𝐿2-Norm by setting 0 ≤ p ≤ 1. They used graph-
cut optimization and max-flow/min-cut calculations to tackle binary optimization tasks. The 
primary objective is to identify the integer image k that minimizes the energy 
function 𝐸(𝐾|𝜓)[J.M B. Dias & J.M.N. Leitao, (2002)]. PU-max-flow is well suited for the 
minimum norm category of phase unwrapping algorithms, addressing phase discontinuities 
and incorporating nonconvex discontinuity-preserving potentials. 𝐸(𝐾|𝜓) is given as in Eq 
(2.4): 

            𝐸(𝐾|𝜓) =∑ 𝑉(∇ℎ𝜙𝑖𝑗)𝑣𝑖𝑗 + 𝑉(∇
𝑣𝜙𝑖𝑗)ℎ𝑖𝑗

𝑖,𝑗∈ℤ1

   (2.4)

Where 𝐤 ≡  {𝑘𝑖𝑗 ∶ (𝑖, 𝑗)  ∈ ℤ0} wrap-count image,(𝑖, 𝑗) ∈ ℤ1 ≡ {𝑖 = 0,1,⋯ ,𝑀, 𝑗 =
0,1,⋯ ,𝑁,  and  ℎ𝑖𝑗, 𝑣𝑖𝑗 ∈  {0,1} are horizontal and vertical discontinuities, respectively; 
wheras ℎ𝑖𝑗, 𝑣𝑖𝑗 = 0 is a a discontinuity, V (·) is the clique potential. 

 

Network programming-based Methods: The reformulation of the PU problem enables 

network optimization techniques [Ahuja93], particularly in small, disconnected urban areas. 

This has led to a growing demand for global optimization and automated unwrapping 

approaches, prompting InSAR network programming concepts [M. Costantini 

(http://www.geo.unizh.ch/ rsl/fringe96/papers/costantini]. 

 

The Minimum Cost Flow (MCF) and Triangulation Network: MCF algorithm introduced by 
Costantini [Costantini, 1998] aims to minimize total cost by maximizing flow in each arc. The 
algorithm calculates the smallest error between the wrapped and unwrapped phase 
gradients, based on phase deviations(𝑘1, 𝑘2,). The wrapped phase gradient and the 
unwrapped phase gradient are obtained by the Eq. (1.9) and there is a 2𝜋𝑘 phase difference 
between them shown in in Eq (2.5), so the unwrapped phase can be obtained by Eq (2.6) & 
(2.7):     

                                                 ∇𝑣𝜙𝑖𝑗   = ∇
𝑣𝜓𝑖𝑗  + 2𝜋𝑘1(I, j) ∈ S1 ≡ {𝑖 = 0,1,⋯ ,𝑀 − 2, 𝑗 =

0,1,⋯ ,𝑁 − 1}, 

∇ℎ𝜙𝑖𝑗 = ∇
ℎ𝜓𝑖𝑗 + 2𝜋𝑘2(i, j) ∈ S2 ≡ {𝑖 = 0,1,⋯ ,𝑀 − 1, 𝑗 = 0,1,⋯ ,𝑁 − 2} (2.5) 

The MCF algorithm consists of establishing the minimum objective function,  

                            𝑚𝑖𝑛{∑ ∑ 𝑤1|
𝑁−1
𝑗=0

𝑀−2
𝑖=0 𝑘(𝑖, 𝑗)|+∑ ∑ 𝑤2|

𝑁−2
𝑗=0

𝑀−1
𝑖=0 𝑘2(𝑖, 𝑗)| } (2.6)  

Where 𝑤1 and 𝑤2represent the reliability of the pixel, 𝑤1, 𝑤2 ∈ [0,1] , solving the k value by 

the constraints as follows:        

𝑘1(I, j + 1) − 𝑘1(I, j) + 𝑘2(i + 1, j) + 𝑘2(I, j) = ∇
𝑣𝜓𝑖𝑗  − ∇

𝑣𝜓𝑖,𝑗+1 − ∇
ℎ𝜓𝑖𝑗 + ∇

ℎ𝜓𝑖+1,𝑗 (2.7) 

 

Statistical-Cost, Network-Flow Algorithm for Phase Unwrapping (SNAPHU): Chen and Howard 

A. Zebker presented a PU technique that is based on maximum a posteriori probability 

(MAP) estimation and nonlinear network flow methods. They defined an objective function 

as Eq (2.8):  

                            𝑚𝑖𝑛 {∑𝑔𝑘(∇𝜙𝑘 − ∇𝜓𝑘)} 

𝑘

 } (2.8) 

Where ∇𝜙𝑘 is unwrapped and ∇𝜓𝑘 𝑖𝑠  wrapped Gradients. Each gradient 
corresponds to an independent cost function 𝑔(. ) shown in Eq (2.9) and total cost of the 
objective function is the sum of all the arc costs. The cost functions are formed from the 
negative logarithms of the unwrapped-gradient probability density functions (PDFs): 
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                             𝑔𝑘(∇𝜙𝑘, ∇𝜓𝑘) = −log (𝑓(∇𝜙𝑘|∇𝜓𝑘, 𝐼, 𝜌)  (2.9) 

Here, 𝑓(. ) represents the conditional PDF of a particular unwrapped gradient given the 
observed wrapped gradient, image intensity (𝐼), and interferometric correlation(𝜌). In 
challenging scenarios like topographic SAR IFGs with layover, rough terrain, and low 
coherence, SNAPHU algorithm performs exceptionally well, outperforming other algorithms. 
Even in a differential test, IFG related to an earthquake fault, their method appears to 
produce a consistent unwrapped solution without apparent errors. The algorithm's accuracy 
and reasonable efficiency make it a worthwhile choice for specific unwrapping applications 
till now [Chen & Zebker, H.A., 2000, 2001, 2002].   

To verify the effectiveness of our forthcoming Deep learning model, we intend to 
utilize the unwrapped IFG obtained through the SNAPHU approach. 

 

Deep Learning Based: Incorporating deep learning for PU presents several advantages, even 
when effective traditional methods exist. Deep learning can handle complex and noisy phase 
patterns, generalize across diverse datasets, and adapt to specific PU scenarios with ease. It 
offers automation, speed, and integration possibilities, reducing the need for manual 
intervention and potentially accelerating the process. Furthermore, deep learning 
encourages research and development in PU techniques, providing room for innovation and 
continuous improvement. The widely adopted approach for PU is the deep Learning based 
Wrap Count method (DLWC). This method treats PU as a classification or segmentation 
problem, treating each pixel's wrap count as a distinct class label. Another deep regression 
method (DREG) uses neural networks to learn mapping between wrapped and absolute 
phases, improving accuracy and anti-noise capability. The research work of some scholars 
focusing on DLWC and DREG methods is presented in Table 2. 

The PU may be affected by the error of the denoising step algorithm if the denoising 

and unwrapping algorithms are improved separately [Hongxing et al., 2015]. Two solutions 

have been proposed to solve this issue: adding anti-noise ability and robustness to the PU 

algorithm or adopting integrated denoising and unwrapping methods [Zhou et al., 2021a; 

Zhou et al., 2021b]. Zhou, Yu, and Lan in 2020 proposed Pgnet, that was designed to acquire 

phase gradient characteristics from extensive training images, encompassing varying noise 

levels and topographic features. Notably, Pgnet exhibited superior performance compared 

to conventional 2-D phase unwrapping (PU) techniques. Furthermore, a One-step 2-D PU 

technique using PU-GAN treats 2-D PU as an image-to-image translation challenge and 

surpasses existing model-based and learning-based 2-D PU methods. It leverages a U-Net 

architecture for generator generation and Patch-GAN for discriminator learning [Zhou et al., 

2022]. PUnet, a robust framework amalgamating U-net, attention mechanism, and positional 

encoding. PUnet demonstrates remarkable accuracy and robustness in accurately 

unwrapping phases from wrapped phases, even in the presence of noise [Liu et al. 2023]. 

While deep learning-based phase unwrapping methods have proven effective in 

optical imagery, their applicability to InSAR is impeded by intricate wrapped phase 

characteristics and low coherence coefficients. Nevertheless, the combination of traditional 

phase unwrapping methods with deep learning represents a promising avenue for further 

development in this field. We are also in the process of investigating a resilient and efficient 

deep learning-based method for addressing the PU challenge, with plans to advance DEM 

development. 
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Table2 Research Papers on Deep Learning Methods for Phase Unwrapping. 
Research 
Papers 

Methodology (Deep Learning 
Performed Wrap Count method 
(DLWC). 

Research 
Papers 

Methodology Of Deep-Learning-
Performed Regression (DREG) 
Method 

Spoorthi et 
al. 2018 

Phase dataset generation 
method and used the 
generated dataset to train a 
SegNet to predict the wrap 
count, Post processed by 
clustering-based smoothness to 
alleviate the classification 
imbalance. 

G. Dardikman-
Yoffe et al., 
2020 

Introduced DREG method using 
residual-block-based CNN, verified 
with congruence, compared with 
wrap count method. Successfully 
unwrapped samples with steep 
gradients, utilized a DCNN to 
predict the unwrapped images 
with regression network in 
simulative cell phase maps 

T. Zhang et 
al., 2019 

Purposed 3 steps including 
segmentation to get wrap 
count, unwrapping, and 
refinement. Presents a 2D PU 
method using DeepLabV3+ 
DCNN, focusing on noise 
suppression and strong feature 
representation. 

Perera and De 
Silva, 2021 

Testing phase unwrapping with 
LSTM networks; focus on 
performance and applicability. 

Junchao 
Zhang et 
al., 2019 

Efficient segmentation network 
for class identification and 
phase discontinuity locations; 
integration of noise-to-noise 
denoised network for noisy 
wrapped phase pre-processing; 
works well with continuous and 
discontinuous wrapped phases. 

Qin et al., 2020 Utilized larger Res-UNet capacity 
for PU; improved accuracy despite 
higher computational cost. 

Sica et al., 
2020 

CNN-based unwrapping 
method using wrapped phase 
and coherence map; estimation 
of wrap count gradient; 
derivation of unwrapped phase 
field; interferometric 
coherence's role in noise 
characterization and 
management. 

Wang et al., 
2019,2022 

Introduction and demonstration of 
deep regression methods; 
superiority in handling noise and 
aliasing issues. 

Spoorthi et 
al. 2020 

Improved wrap count 
prediction accuracy; 
introduction of prior 
knowledge of absolute phase 
values and gradients into the 
loss function. 

Xu et al. ,2022 Enhanced accuracy and robustness 
of end-to-end phase unwrapping 
with composite loss function and 
additional skip connections in Res-
UNet. 
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Training and testing data sets: In the context of our research, it is imperative to establish 
robust benchmark datasets for the purpose of training and evaluating deep learning models, 
focusing on real SAR data from platforms like Tandem SAR-X, Sentinel-1A/B, and SLC 
datasets. The Copernicus program's Sentinel-1 satellite constellation is used for data 
acquisition [Copernicus Open Access Hub, ESA], with Interferometric Wide (IW) Swath mode 
being the preferred choice for interferometric analysis [ESA TM-19] and land subsidence 
detection. Two primary methods are employed to create benchmark datasets: generating 
IFGs from SLC image pairs using the SNAP (Sentinel Application form) toolbox [Sentinel-
1User Handbook, ESA] and the state-of-the-art SNAPHU method for PU [Chen & Zebker, 
2001], and simulating interferometric phase patterns using an edited Shuttle Radar 
Topography Mission (SRTM) DEM. These datasets will be valuable resources for deep 
learning experiments and upcoming SAR missions like NISAR and RISAT.  The Alaska SAR 
Facility's website (https://asf.alaska.edu/how-to/data-basics/datasets-available-from-asf-
sar-daac/) provides access to wrapped IFGs and SLC pairs for download. Furthermore, our 
choice of deep learning techniques for this research stems from the need of automatically 
extracting intricate patterns and features from SAR data, enabling more accurate and 
efficient analysis and interpretation.  
 

Results 

The Least-Squares (LS) approach seeks to reduce the weighted discontinuities in the 
unwrapped phase, producing a smoother phase map. However, the LS technique could result 
in a slightly different unwrapped phase after rewrapping compared to the original IFG, 
necessitating more iterations to get the desired outcome. Figure 3.1 shows the unwrapped 
phase of a noisy wave signal after weighted and unweighted least square PU, followed by 
restoration.  

Figure 3.2(a) displays the outcomes of Max flow methods applied to simulated 

Gaussian data. This approach consistently delivers robust unwrapped phase results, 

particularly in the presence of mild noise. In contrast, Figure 3.2(b) showcases the results 

achieved by the cutting-edge SNAPHU algorithm when applied to SLC image pair, as 

mentioned in the STEP forum (https://forum.step.esa.int). In Figure 3.3(a) and Figure 3.3(b), 

we depict two distinct scenarios involving the unwrapped phase generation from simulated 

data with varying noise levels, as discussed by Perera & Silva [Perera & Silva, 2021]. In 

scenario (a), the Root Mean Square Error (RMSE) stands at 0.8352, whereas in scenario (b), 

the RMSE is 0.0596, highlighting the algorithm's enhanced performance in the latter case. 

Moving to Figure 3.4, we present the results of a CNN-Based Coherence-Driven Approach 

applied to the Wrapped Phase. Figures 3.4(b) and 3.4(c) respectively showcase the 

Unwrapped Phase outcomes as introduced by Sica & Scarpa [Sica et al. ,2022] with Figure 

3.4(b) illustrating the input Coherence data for the network. These results underscore the 

effectiveness of the CNN-Based Coherence-Driven approach in handling the wrapped phase 

data. 
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Fig 3.1 (a) Original plane wave with uniform noise added. (b) Unwrapped Phase of Noisy wave through 
utilization of Unweighted Least square PU (c) Rewrapped phase reconstructed from unwrapped Noisy 
wave (b) Rewrapped Phase from unwrapped Noisy wave in 15th iteration of weighted. 

 

Fig. 3.2 (a) (1) Gaussian ground truth data (GT), Wrapped Gaussian and Unwrapped Gaussian(b)Wrapped & 
Unwrapped IFGs from SNAPHU (Credits: Chen & Zebker, 2000, and TOPS Interferometry Tutorial ,2020 Andreas 
Braun, Luis Vec). 

 

Fig. 3.3 (a) at lesser Noise Level Wrapped Phase, Predicted Unwrapped Phase and GT phase. (b) At more Noise 
Level Wrapped Phase, Predicted Unwrapped Phase and GT phase. 
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Fig. 3.4 (a) Coherence Input  (b) Wrapped Phase  (c) Unwrapped Phase from Method of Sica et.al.,2022. 

Discussion 

Although computationally fast, Path following algorithms are not reliable in circumstances of 

extreme noise. Though the Minimum norm method's performance is noise-resistant, its 

computations might make them unsuitable for real-time applications While network 

programming-based techniques yield good outcomes in some situations, most applications 

employ SNAPHU as a leading. When standard techniques struggle, like in noisy, inconsistent, 

and aliasing situations, deep learning-based solutions perform well. Deep learning-based 

Classification, Segmentation and Integrated denoising methods continue to have high 

precision despite these difficulties. They are producing acceptable results for low noise, and 

with targeted training, for discontinuous as well. [Wang et al., 2022]. The evaluation of the 

pluses and minuses of various PU algorithms, as described in Table 3, emphasizes the 

significance of considering these elements when choosing the best strategy for an InSAR 

data processing task. When deciding between traditional and deep learning approaches for 

PU, it is imperative to consider the specific requirements and constraints of the task. Factors 

such as data availability, computational resources, and desired outcomes should guide this 

decision. Table 3 provides a detailed summary of the Advantages and Limitations of Phase 

Unwrapping (PU) Algorithms in the context of InSAR Data Processing. 

Conclusions 

PU plays a pivotal role in the processing of InSAR data, contributing significantly to various 
scenarios. Particularly, in scenarios involving longer-time differential IFGs or regions 
characterized by high coherence and minimal phase noise, the application of multi-looking or 
filtering techniques can greatly enhance the PU process. 

However, as the volume of data continues to grow, the computational efficiency and 
resilience of the algorithms used become paramount. Identifying potential sources for 
improving PU methods is a crucial step, yet the optimal combination of these sources 
remains an ongoing challenge. While it may be uncertain, whether a single PU algorithm can 
address the majority of PU problems satisfactorily due to their complexity, there should 
always be an algorithm capable of producing an acceptable result.  

Our forthcoming research also aims to Strike the right balance between harnessing 
the advantages of deep learning and leveraging the proven effectiveness of traditional 
methods. 
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Table3 Summary of Advantages and Limitations of PU Algorithms InSAR Data Processing. 
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